ACHIEVING ROBUST INTERCHANGEABILITY
OF TEST ASSETSIN ATE SYSTEMS

Roger P. Oblad
Santa Rosa Systems Division
Hewlett-Packard Co.
1400 Fountaingrove Par kway
Santa Rosa, CA 95403 USA
(707) 577-3466
oblad@sr.hp.com

Abstract - This paper identifies the key issues that have
made it so difficult to achieve asset interchangeability.
Several of the historical attempts to solve the problem of
asset interchangeability are described, along with an
analysis of the reasons that they did not achieve the
expected results. Specific topics that are covered are
SCPI, VXlplug&play, VI, ATLAS, and Measurement
Subsystems. Principles associated with the ownership of
interfaces will be outlined. Finally, a set of rules and
principles will be discussed that must be applied to
achieve "robust" asset interchangeability. “Robust” is
defined as interchangeability that can be "guaranteed"
without testing all TPSs against the modified test system.

INTRODUCTION

For the purposes of this paper, “test asset
interchangeability” is defined as the ability to replace
a given hardware asset with an alternative asset of
sufficient capability but of different design or
manufacturer in an Automatic Test System (ATS).
Software changes are Ilimited to replacing
components directly associated with the asset.
Application software--or more specifically Test
Program Set (TPS) software--must not require
changes. After the interchange is performed it must
be possible to guarantee that the same results can
be obtained with the modified ATS.

The need for test asset interchangeability comes
from the fact that target test devices—that is, Line
Replaceable Units (LRUs) or Devices Under Test
(DUTs)--and their associated test software TPSs can
outlive the commercial test instrumentation
employed by 10 to 20 years. This is especially true
for aircraft, automobiles, trucks, radar systems, and
weapons systems.

In many cases the following approaches have been
used to deal with asset obsolescence issues: 1)
modify TPS software, or 2) assure continued

availability of test assets. There is a large
investment in TPS software. Having to modify it
whenever a test asset is to be replaced is very
expensive and logistically almost impossible. Even if
it were possible to maintain the availability of test
assets, this would lock test systems into "old" assets
that could not answer the demands for size
reductions or other new performance requirements.
It doesn't take much to cause an asset to become
obsolete. This can happen due to a business
decision of a vendor or it can be caused by an
unresolvable technical or supply problem with a
lower-level part or process.

Different approaches have been taken to achieve
asset interchangeability. Each of them tends to
focus on only one aspect of the problem. The
problem is complex and a full solution requires that
several of these approaches be used, to one extent
or another, together. The solution cannot just
address the technical issues. It must also address
the business issues associated with the behavior of
the free enterprise system and also factor in the
requirements of logistics and support. As these
various approaches are reviewed, it is helpful to
notice at what point in the overall test system
architecture the solution is being applied.

There have been several recent developments that
have been focused on asset interchangeability.
These include work by Hewlett-Packard Company,
Lucent Technologies, National Instruments, and
work at the ATS R&D IPT (ARI) for the Department
of Defense (DaD).

Three years ago work began at HP to create the
“Measurement Subsystems Architecture,” which was
first reported in AUTOTESTCON-1997[1]. At
AUTOTESTCON-1998, HP Vice-President Ned
Barnholt[2] offered this work to the industry as a

starting point for a new industry-standard software
approach for achieving test asset interchangeability.
At about the same time, Lucent Technologies
independently developed an internal solution to test
asset interchangeability for their internal needs,
which they referred to as “Call by Name Drivers.” In
August 1998, National Instruments initiated the
formation of the VI Foundation[3], whose mission is
to develop semantic standards for common classes
of instruments. From the DoD, the ARI[4] has
developed an overall ATS architecture over the last
several years that has been focused on both test
asset interchangeability and TPS transportability.
Another concept investigated by some DoD
customers is that of synthetic instruments.

Although these various efforts are largely
complementary, their shared focus has resulted in
confusion. In order to avoid the confusion between
the HP work on Measurement Subsystems and the
IVI Foundation work on driver specifications, the two
activites have been combined under the
sponsorship of the IVl Foundation. There are strong
similarities between the ARI architecture, the HP
Measurement Subsystems work, and the work done
at Lucent. An effort is underway to adopt common
terminology.

INTERCHANGEABILITY

The Value of Semantic Standards

Both interchangeability and interoperability are
dependent upon semantic standards. Semantic
interfaces are without question the most important
element of any interchangeability solution. All of the
interfaces in an automatic test system present their
capabilities through ASCIl (usually SCPI)
commands, function calls, or object methods. The
spelling of these commands and their associated
meanings establish all of the functionality in a
system.

Ownership of Interfaces

It is very useful to clearly identify the interfaces in a
system and determine who the owners of these
interfaces are. The client of an interface is at risk if it
is owned or controlled by a person or organization
other than the client. When the provider of a
component or asset does not know how it is used,
then the provider cannot guarantee the use. These
two principles are key to understanding why test
asset interchangeability has been so difficult to

achieve. They are also key principles in designing a
solution.

Architecting for Interchangeability

Early in the history of ATE, application programs
directly interacted with instruments. When this is
done, where is the measurement? Part of the
measurement is in the application and part of it is in
the instrument firmware. Both interoperability and
interchangeability are sacrificed when this is done
because a physical barrier, the 1/O interface, lies in
the middle of the measurement. The test asset
vendor controls the asset’s interface but doesn't
know how it is used. The application developer is
depending on the test asset interface but has no
control over it.

By adding two new abstraction layers, clean roles
and responsibilities are established. The details
follow.

Requirements of Interchangeability

In some cases, interchangeability is not possible.
This happens when an alternate candidate test
asset cannot perform the required measurement or
generate the required signal of the original test
asset. In this case there is no solution other than
finding a different test asset or set of test assets that
has the necessary capabilities.

The following conditions are necessary to achieve
interchangeability:

1) Alternative test assets must be capable of
performing the same physical measurements,
control, or stimuli required by the end application.

2) Any software that uses a test asset’'s APl must
either find the same API or be interchanged along
with the test asset.

3) Any test asset-specific peculiarities of an
interchanged test asset must be managed by
software.

One may wonder if achieving partial
interchangeability would suffice. Is 80 percent
interchangeability enough? The interchangeability
problem is a difficult one to solve, and going part
way will certainly reduce the effort required to do an
interchange. The problem is that the remaining 20
percent can take a lot longer than first anticipated.
Most people really are not satisfied if the ATE can

run a TPS without a software failure. What they
really need is the “same answer.” However, if the
real requirement for asset interchangeability is to be
able to “guarantee" the same answer without
thoroughly testing the end application or all
associated TPSs, then a more comprehensive
solution is required.

Second Order Effects and Asset
Peculiarities

There are several good examples of test assets of
the same general type, but of a different model or
manufacturer, that should have been able to perform
the same operation of another. However, in actual
use the assets do not produce the same answer to
the same measurement. This can occur for a
variety of reasons. The internal algorithms or
methods of instruments are different. These
problems affect even the simplest of instruments,
such as a digital voltmeter (DVM). Following are two
actual examples of difficulties encountered
attempting to interchange DVMs.

In one system, the differences between the internal
autorange features of two DVMs resulted in the
instrument presenting different input impedances to
the test circuit. This difference resulted in
measurement errors that were unacceptable.

In another system, when two different DVMs were
used to measure the RMS voltage of the same
signal, they returned different answers. This was
caused by differences in the way the internal
algorithms of the DVMs interacted with noise on the
measured signal.

Test assets that are considerably more complex
than a DVM, such as microwave sources and
spectrum analyzers, create interchangeability
problems that are much more difficult.

Other differences can involve setup requirements.
An example of this is using a four-channel
oscilloscope in place of a two-channel oscilloscope.
New decisions need to be made that could not have
been made during the initial development of the
ATS.

IVI-MSS, described in this paper, provides a place to
put the code, which addresses these problems.

APPROACHES TO TEST ASSET
INTERCHANGEABILITY

[et 10
Interfaces
| T T

Measurement Subsystem
Figure 1. AutomaticTest System

There are three general approaches to test asset
interchangeability (Figure 1). The left side of the
figure represents the application TPS environment.
A solution that applies directly to the TPS would
specify the semantics of an abstract interface that
TPS software must use. This is often referred to as
a signal interface, and the most common
implementation is the ATLAS language. The right
side of the figure represents the physical test assets
in a system. The solutions focused on here are
those that would specify a standardized semantic
interface for test assets. Examples of this are CIIL,
SCPI, and IVI-Drivers. The section in the middle
represents a third approach, which is to insert two
new abstraction layers between the TPS
environment and the test asset environment. This is
the subsystem approach, which is the focus of this
paper. Each of these approaches has value and the
best ATS designs could well incorporate all three of
them.

ATLAS

ATLAS has developed over the last 30 years. It was
started by the commercial aircraft industry in the
mid-1960s. Initially, it was a language of English
nouns, verbs, and adjectives, which was intended to
describe the specifications of avionics equipment in
a standard way. The documents created using this
language were originally meant for human reading
only. In the mid-seventies, ATLAS made the
transformation to a programming language.
Software compilers were created to read ATLAS
statements and use them to help develop TPSs. A
basic principle of ATLAS was that programs written
in it would not make any direct references to test
instrumentation. This was to assure interoperability
of TPS software and to create asset
interchangeability. As a result, ATLAS supports no

direct way to address instrument functionality. This
seems like a good thing for interoperability.
However, the translation between ATLAS programs
and instrument functionality has to take place
somewhere in a system. Unfortunately, there has
been no consistent standard on how this is done.
Also, since ATLAS has not always been able to
keep up with providing all the needed standard
nouns, verbs, etc. in a timely fashion, TPS
developers have sometimes resorted to direct calls
to test assets. Using non-ATLAS modules (called
NAMSs) does this.

It has become common for these NAMs to talk
directly to a hardware asset's first-level interface.
These interfaces are owned and controlled by the
test asset manufacturers, while the NAM is owned
by the TPS developer. When this is done, both
interoperability and interchangeability are sacrificed.
The problem here is not ATLAS or the concept of a
signal descriptive language. A quality ATLAS
implementation fully abstracts test asset
functionality. The problem is in the lack of semantic
standards that NAMs could use to access ATS
functionality. This has forced TPS implementers to
deal directly with instruments. If these semantic
standards existed, they would simplify the task of
maintaining ATLAS implementations as well.

Standardized Interfaces for Test Assets

Another approach to test asset interchangeability is
to try to standardize the programming interface to
instruments. This has taken two paths, one for
ASCIl-controlled test assets and another for driver-
controlled test assets. Both paths have similar
histories.

The ASCII path started with the advent of the IEEE-
488 or GPIB bus. This was used for 10 years before
the development of SCPI (Standard Codes for
Programmable Instruments). Messages were in
ASCII, but there were no standardized semantics.
Different companies used different commands for
the same functionality. Even different divisions of
the same company used different commands for
similar functions. The situation improved when the
IEEE 488.2 standard was released. This produced
a few common commands and protocols, but there
still was no semantic standard for instrument
functionality.

The SCPI language was created to solve this
problem. SCPI was very helpful to application
programmers because it provided an extensive set
of standardized commands, but it did not deliver

much asset interchangeability. This is because the
asset providers own these interfaces and need to
use them to expose all of the features of their
product. The requirements of the free enterprise
system make it impossible to standardize unique
features or even new features.

The driver path started ten years later than the
ASCII path but it is following a similar history. Early
driver-controlled test assets were created with no
interface standards. Later, the VXI Consortium
developed the VXIlplug&play driver standard, which
provided improvements similar to those that were
provided by IEEE 488.2 for ASCII programming.
The VXlplug&play standard established a few
common commands, but there still was no semantic
standard for instrument functionality. For this
reason, VXlplug&play did not provide any asset
interchangeability. Semantic standardization for
drivers is finally being developed as a result of the
work of the IVI Foundation, which is now creating
standards for the software interfaces of common
instrument types.

There are more changes in store for drivers. In the
past, drivers have had the reputation of being of
poor quality, incomplete, unsupported, and free. On
the other hand, SCPI interfaces have been of good
quality, complete, supported, and considered part of
a test asset product. As the test and measurement
world moves from ASCII to driver programming, it
seems appropriate that the “primary automation
interface” of test assets will move from SCPI to
Application Programming Interfaces (APIs). As a
result of this, the time will come when test assets will
directly present APIs and not SCPI interfaces. As
this happens, drivers will become part of the product
and will also be supported, complete, and of high
quality. Unfortunately, they will no longer be
available in source code form. This means that
another place will need to be identified to apply code
that is needed for customer adaptation. [VI-MSS,
described later, provides an answer for this.

In addition to this, there are technology changes
taking place that affect drivers. There have been
many problems with ANSI-C drivers that can be
solved by the use of ActiveX technology, which is
now available on most major platforms. All of this is
emerging[9].

Measurement and Stimulus Subsystems
Hewlett-Packard’s Measurement Subsystem work[5]

is another approach to test asset interchangeability.
This work was done specifically to make it possible

to deliver a complex measurement solution so that
the software investment could outlive the associated
test assets. To bring the story up to date, the HP
E5500 Phase Noise Measurement Subsystem][6],
now supports some 30 different test assets. This
provides the end customer with tremendous
flexibility in use of the system. It was the
discontinuance of a test asset that resulted in the
initial development of this system architecture. It is
interesting to note that just this year, one of the
supported assets for the new system, a spectrum
analyzer, unexpectedly was discontinued. It was
replaced using the concepts described in this paper,
and delivers the same results as the prior asset.
The effort to do this, including the testing burden,
was small.

This work is now being carried forth under the
sponsorship of the IVl Foundation. A subgroup of
the IVl Foundation is focused on creating a formal
specification that will enable other solution providers
to use the Measurement Subsystem Architecture.
In this paper, the work is referred to as IVI-MSS for
Measurement and Stimulus Subsystems. Other
names that have been used at different times are
the Measurement Subsystem Architecture (MSA),
and Measurement Subsystems.

WHAT IS IVI?

Interchangeable Virtual Instruments (IVI) is the
name of an industry group originally formed in
August 1998. It is focused on the challenge of test
asset interchangeability. The IVl Foundation, now
consisting of 29 companies [3], is an excellent group
of concerned and interested end users and test
asset providers. The announcement of the
formation of the IVI Foundation, and the offering of
the HP-developed Measurement Subsystem
Architecture as the basis of an industry standard,
occurred within a few days of each other. Since
these two efforts are focused on different aspects of
the problem of test asset interchangeability, it was
proposed that they be developed together under the
same organization. It is expected that this will
reduce confusion over conflicting claims.
Subsequently, the IVI-MSS subgroup of the IVI
foundation was formed with the mission to create a
specification for building subsystem solutions.

What are IVI-Drivers?
IVI Class Drivers provide standardized API functions

for test assets, and by themselves provide a certain
measure of interchangeability. When the utilization

of a test asset is limited to the common class driver
functions and there are no problems with "secondary
effects” of instruments (see “Second Order Effects”),
the additional requirements of IVI-MSS are not
needed.

It is important to note that neither the asset producer
nor the driver provider can be expected to
“guarantee” that an interchanged asset will deliver
the same answer.

What is IVI-MSS?

Measurement and Stimulus Subsystems (IVI-MSS)
are solutions that deliver test and measurement
functionality. These solutions often involve two or
more physical test assets that are used together to
perform the required functions. Associated with IVI-
MSS is a set of design rules and principles, which, if
followed, delivers the following values that go
beyond the capabilities of IVI-Drivers:

1. The ability to use an instrument of a different
type to fulfill the functions served by another.
(Of course, the instrument has to be capable of
doing the required operation.)

2. A place to put software code that is necessary to
take care of "second order" instrument effects
and other peculiarities. These are the things
that, besides semantics, keep one instrument
from performing like another.

3. A way to create solutions that involve more than
one physical instrument. The resultant code is
reusable, making it possible for the code to be
separate from application programs.

4. A guarantee of the “same answer” after an asset
is interchanged. Because of clearly established
rules on the ownership of interfaces, this
becomes possible for a solution provider.

5. A means of achieving software reuse for
complex measurements and stimulus scenarios.

HOW DO YOU VERIFY
INTERCHANGEABILITY?

The simple answer is by testing. The difficulty
depends on how well understood the interfaces are
behind the interchange. In the case where a test
asset is interchanged, the first requirement is that
interface features of one asset must be available in
the other. Unfortunately, this is seldom the case.

The problem then comes down to finding out which
interface features were actually used in the
application. This is almost impossible in today’s
large ATE systems that operate many TPSs. This is
particularly true in systems where TPS software is
allowed to directly interact with test assets. In
systems like these, the only way to verify that the
“same answers” are obtained after an interchange is
to collect all of the LRUs or DUTs along with their
associated TPSs and check every one. Because
this is so undesirable, a demand has been created
for better approaches to the problem.

The problem of verification is one of clearly defining
interfaces and controlling their semantics and usage.
IVI-MSS specifically addresses this problem with the
following two elements: 1) the solution provider
knows exactly what capabilities are used, and 2) the
responsibility for performing the verification is placed
directly on the solution provider. The term “solution
provider” refers to organizations that “own” the
interfaces in an Automated Test System and are
able to guarantee the functionality behind them.
Clearly, the problem of test becomes simpler as the
number of things to test is smaller and better
defined. A key design principle in IVI-MSS
implementations is to only expose the functionality
that is needed. This simplifies the testing burden.

Verification includes two tasks: 1) Making sure that
all of the required APIs of an interchanged
component are found and match up, and 2) Verifying
that the client of the API receives the “same
answers” or results from use of the new
components. This verification is necessary to make
sure there are no "secondary effects" or other asset
peculiarities.

The “guarantee” is possible because the guarantor
knows what to test. Facilitating interchangeability
comes from reducing the burden of test and
verification by breaking out modular components.

IVI-MSS ARCHITECTURE

Overview

A key factor in the development of the Measurement
Subsystem Architecture is clearly establishing who
owns the various interfaces in a test system, and
how they're developed, supported, and managed
over the life cycle of the system. An IVI-MSS
solution inserts a new "owner" between the ATS
specifier and the asset provider. The ATS specifier
relies on the solution provider to provide a stable

API for measurement or stimulus servers. This is
the interface that the solution provider "guarantees”
will be supported over 10 to 20 years.

IVI-MSS provides a standard way to create and sell
test and measurement solutions where part of the
value is in software instead of just hardware assets.

In order for products like this to be accepted by
customers, they need an interface with a familiar,
comfortable look and feel. It is also necessary to
overcome the perception that the products rely on
proprietary technology. The work currently being
done by the 1VI Foundation should help this occur.

Architecture

The distinguishing characteristic with IVI-MSS is the
introduction of two new software interfaces between
the TPS programmer and physical test assets.

One of these is the interface to a new software
component called an Asset Control Module (ACM)
(figure 3).

The other new interface is for a Measurement Server
or Stimulus Server. This interface provides solutions
that are both client- and asset-independent.

The solution provider owns the interface between a
Measurement Server and all associated ACMs. To
achieve interchangeability, the solution provider
creates new ACMs for interchanged assets and
thoroughly tests their interfaces after an interchange.
The new ACM is the place to put any unique code
that is necessary to deal with any peculiarities of the
new asset.

In the example of a Measurement Subsystem (figure
2), a Measurement Server is associated with three
ACMs and their associated physical test assets. In
addition, the example shows three possible client
users of the subsystem. One is a GUI for manual
use, the second is a SCPI implementation for use by
legacy ATE systems, and the third is a COM-based
API for direct use by client software.

Additional GUIs are available in a subsystem
because experience has shown that it is helpful to
be able to observe and interact with each level of a
system hierarchy. There are also two common
components, the Asset Server and the Event Server,
that are shared among multiple subsystems.

=T [/

I l Test Asset

Figure 2. Measurement Subsystem

Measurement Servers and Stimulus
Servers

Each unique measurement domain would have its
own Measurement Server or Stimulus Server.
Typical ATSs can have multiple servers. Examples
might include radar measurements, distortion
measurements, phase noise measurements, and
complex signal stimulus.

Each Measurement or Stimulus Server is associated
with a set of two or more Asset Control Modules
(ACMs). Each ACM implements a "role" for its
associated server.

Making good decisions on which code should be put
in a Measurement Server and which code should be
put in an ACM is critical to the design of a new
measurement subsystem. The IVI-MSS subgroup
intends to provide guidelines to assist solution
developers in making these decisions.

Asset Control Modules (ACM)

An ACM is required for each asset used by a
Measurement or Stimulus Server in a subsystem.
ACM are not required for other assets in an ATS.
The left side of the ACM (figure 3), shows the
interface to a Measurement Server. This interface
presents only the features and capabilities required
for a single "role" in a subsystem.

Controlled

Semantics

a"Role" L1

IV Diver

/ YWi'hatever

the asget

heeds

Figure 3. Asset Control Module (ACM)

The right side of the ACM shows the interface to a
physical asset. The ACM may do whatever is
necessary to communicate with its associated asset.
An IVI-Driver is being used for asset communication
(figure 3). This is not required; however, using an
IVI-Driver provides the benefit that in some cases,
an interchange may be possible without creating a
new ACM.

When necessary, an ACM contains the software that
will make a lesser asset "measure up" to that of a
more capable one. For example, if a digitizer card is
to replace an FFT analyzer in a measurement
subsystem, the ACM must first acquire the time
record, then perform an FFT, and finally return the
measurement result according to the formatting
requirements of the associated “role.” This code
goes in the "Domain Specific Algorithms" block. Any
measurement software that would have to be
rewritten for a new asset must be put in the ACM
and not the Measurement Server. ACMs are part of
the value-added for a Measurement Subsystem.
They can be individually sold and license-key
protected if desired. ACMs are the key element in
providing interchangeability of assets.

ACMs are the responsibility of their client. This
means that whoever defined the ACM roles and
developed the associated Measurement or Stimulus

Server is responsible for the development and
verification of ACMs for that role.

Asset producers are responsible for providing the
primary automation interface for their assets such as
SCPI interfaces or IVI-Drivers. They cannot be
responsible for developing or proving the ACMs that
are needed by a subsystem unless they also provide
the subsystem.

What is a Role?

A “role” is a specific interface specification between
a Server and an ACM. It is defined by the solution
provider and must deliver the specific functionality
that is needed by the associated Measurement or
Stimulus Server. ACMs are subsystem-specific.
Different subsystems would use different ACMs for
the same asset. To keep the burden of test low, it is
vital that a role does not expose unneeded features
of an asset.

An ACM frequently acts as a “bandpass filter” on the
feature set of physical assets. It provides what a
client server needs and NOTHING else. This is
what keeps the burden of test manageable after an
interchange. A role has a rough correspondence to
various types of instrumentation. A real
Measurement or Stimulus Subsystem generally
requires several roles.

TECHNOLOGY IMPACTS

The emergence of the Windows’ platform as well as
component software design technologies has had a
tremendous impact on the test and measurement
world. Another significant technology change is the
use of client-server architectures.

The PC platform is pervasive with ever increasing
performance. It is a natural place to implement
functionality beyond what is “in the box” or on a
card.

Software reuse has been frequently touted in the
literature over the last decade, but until the
CORBA[7] and COM Object Request Broker (ORB)
implementations came along, very little real progress
had been made. For a few years, there was a lot of
confusion over these two competing
implementations. At the time of this writing, COM[8]
and its related technologies, DCOM and ActiveX,
are becoming pervasive and implementations are
available on all major platforms[9] including Linux,
Sun-Solaris, HP-UX, and Windows. ActiveX is a

very promising technology and should provide an
unprecedented amount of interoperability between
different software application environments.

Work is needed to standardize how technologies are
used between IVI-Drivers, IVI-MSS, and other
system components.

SUMMARY OF IVI-MSS PRINCIPLES

1. Measurements have value independent of
instruments, applications, and TPSs.

2. A measurement’s utilization of the features of
instruments must be rigidly controlled by the use
of “roles.”

3. Asset Control Modules allow subsystem
providers to guarantee a support life beyond the
life of the utilized instruments.

4. ltis crucial to know who owns various interfaces.

5. The primary automation interface of a test asset
can never be the interface of interchange
because the client doesn't “own” it. This is
regardless of whether the interface is ASCII or a
driver interface. These interfaces must never be
used directly by application programmers or
TPS developers in systems that must deliver
interchangeability.

6. General-purpose interfaces that expose all of a
test asset's features are difficult (if not
impossible) to test.

7. The ability to test and verify increases as API
complexity decreases.

8. The ability to interchange increases as the ability
to test increases.

9. For interchangeability to be achieved at an
interface, the client of the interface must "own" it
and be responsible for the test and verification
after the interchange.

10. The abstraction of a measurement serves to
provide a natural isolation from asset
peculiarities.

11. When there is a small, well-defined interface
where the differences between two assets are
exposed, testing can be limited to this interface.

12. Extra layers of abstraction in a system naturally
simplify the burden of test and make it easier to
deliver interchangeability.

13. The number of potential interchangeable test
assets is inversely proportional to the number of
the exposed features in an API.

Measurement

1
1
: GPIB | Asset 1
1
1
1 oPB | Asset2
Application :
Programs !
ogl :GPIB Asset 3
TPSs .
1
1
1
1
1

Figure 4. ATS with Various Interfaces

FULL ATS IMPLEMENTATIONS

Figure 4 shows an ATS implementation where an
application is allowed to talk directly to different
types of interfaces. This demonstrates that IVI-
Drivers, IVI-MSS, SCPI, VXIplug&play, and other
types of interfaces can all coexist within a given
system. An application program can interact with
assets in any of the ways shown in the figure. If an
application program talks directly to an instrument's
SCPI interface or if it directly calls an instrument's
plug and play driver functions, there can be no
interchangeability without changing the application
program.

Calling the functions of an IVI-Driver provides
semantic interchangeability.

Calling the functions of an ATS-specific set of ACMs
can provide "same answer" interchangeability for
dissimilar assets. In the case where the application
program is shown interacting directly with ACMs, the
assumption should be made that the application
program is serving the function of an IVI-MSS
Stimulus or Measurement Server.

Calling the functions of a Measurement Server
delivers "same answer" interchangeability as well as
reuse of multi-instrument measurement or stimulus
scenarios.

Figure 5 shows an ATS implementation that adds an
additional abstraction layer for TPS software. This is
very similar to the DoD ATS R&D IPT
architecture[5]. This type of system might use a
signal-descriptive language such as ATLAS. The
ATS system would do the mapping between the
signal-descriptive semantics and the supported
stimulus or measurement interfaces in the system.
When Asset Control Modules do all of the asset
control, truly robust interchangeability can be
achieved.

Signal
Interface

Resource
Interface

Requirements
Manager

Asset

Measurement
Server 1

Measurement

GPIB | Asset 1

Asset Control
Module

GPIB | Asset 2

GPIB Asset 3
MXI 1 Asset n

Server

v

Requirements —

Module

Capabilities

> Asset Control
Module

Figure 5. ATS with Signal Interface

STANDARDIZED COMPONENTS

Several components are shared among multiple
Measurement or Stimulus Subsystems. It is
expected that the IVI-MSS specification that is under
development will document the interfaces of these
components.

Asset Server

The Asset Server uses the NT registry to store
information about each instrument that is used in the
system. Information like the I/O bus, I/O address,
I/O library, and the selection of a specific asset for
use by a Measurement Subsystem is managed by
this component.

Event Server

The Event Server accepts call-outs from the various
components to collect asynchronous events. It time-
stamps and records this data and makes it available
for a variety of uses.

Common Base Classes

Common Base Classes for both Measurement
Servers and Asset Control Modules can make it
easier to build Measurement Subsystems and will
contribute to their overall quality and common “look
and feel.”

Path and Calibration Management

Managing switching systems that establish signal
paths, and properly utilizing calibration data and
measurement uncertainties should also be done in a
standard way in ATS implementations.

CONCLUSIONS

To successfully build Automated Test Systems that
deliver robust interchangeability, the learnings and
experiences of all the different approaches need to
be leveraged and built upon. This includes ATLAS,
SCPI, VXIplug&play, IVI-Drivers, and IVI-MSS. This
can be accomplished by taking the following actions:

1. Use signal-descriptive semantics as close to the
TPS as possible.

2. Standardize the semantics used to control test
instrumentation.

3. Use IVI-MSS Measurement Servers for multi-
asset measurements.

4. Utilize IVI-Drivers where available to reduce the
effort required to interchange an asset.

There are still some challenges to work out. One of
these is to harmonize the underlying software
technologies that are being used. IVI-MSS is COM-
based, and at present IVI-Drivers are ANSI-C-API-
based. Work is in progress to harmonize both
efforts under ActiveX technology. When this is
accomplished, it will be simpler than ever before to
build robust Automatic Test Systems in a great
variety of application development environments.

When TPS developers, primes, or other providers
use IVI-MSS to build products that implement test
and measurement solutions, it is possible for the
providers to offer support for an extended period of
time such as 20 years. The underlying hardware
most likely will have to change, but when there is
new hardware that has the necessary capabilities, it
can be utlized and the “same answer’ can be
obtained. Because of the use of Asset Control
Modules, the burden of test after the interchange is
manageable. [VI-MSS-based solutions can be
utiized from a wide variety of application
development environments and can be integrated
with multi-vendor solutions

GLOSSARY

APl — Application Programming Interface. The
software interface to a test asset or other
software component.

Asset Control Module (ACM) — A key software
component of a Measurement or Stimulus
Subsystem that translates role interface
functions into asset-specific actions. There is
one ACM for each asset in each subsystem.

Asset Server — A common IVI-MSS component
that keeps track of all assets on an ATS.

Event Server - A common IVI-MSS component
that manages asynchronous event
communications on an ATS.

IVI-MSS — A written specification, under
development by the IVI Foundation, that
specifies how to create Measurement or
Stimulus Subsystems.

IVI-Drivers — A set of written specifications,
under development by the IVl Foundation, that
specifies the semantics of common test
instruments.

Measurement Server - The core software
component of an IVI-MSS subsystem. It
presents an APl to application programmers,
and when desirable, aggregates the behavior of
multiple test assets.

Measurement Subsystem — A solution built using
the IVI-MSS design rules and common
components.

Robust — Pertains to test asset interchangeability
where it is possible to guarantee the same
answer, where it is possible to interchange an
instrument of a different basic type, and where it
is possible to compensate for instrument
peculiarities.

Role — The interface between an Asset Control
Module and a Measurement Server.

Same Answer - A requirement for test asset
interchangeability.

Secondary Effects - Those test asset differences-
-beyond semantics--that interfere with

interchangeability.

Semantics — The meanings associated with
specific spellings of ASCII commands, function
names, or object method names.

SCPI — Standard Commands for Programmable
Instruments. A semantic standard for the ASCII
programming of test assets.

TPS — Test Program Set. A software program
and associated fixture hardware needed to test
a given DUT or LRU.

VXIplug& play Drivers - A software interface to a
test asset that provides C API's but little
semantic standardization.

REFERENCES

[1]Roger Oblad, “Applying New Software
Technologies To Solve Key System Integration
Issues.” AUTOTESTCON-1997 Proceedings,
Piscataway, New Jersey. IEEE, pp.181-189.

[2] Ned Barnholt, "Connecting You to the Future.”
Keynote Address, AUTOTESTCON-1998.
http://www.tmo.hp.com/tmo

[3] IVI Foundation: http://www.ivifoundation.org/

[4] ATS Architecture: Developed by the Test
Resource Working Group within the DoD ATS R&D
IPT organization (ARI).

[5] Measurement Subsystems, HP-TMO:
http://www.hp.com/go/ivi

[6] HP E5500 Phase Noise Measurement
Subsystem:
http://www.tmo.hp.com/tmo/datasheets/English/HPE
5500_Family.html

[7] Corba: The Object Management Group (OMG):
http://www.omqg.org/

[8] COM Technology: http://www.microsoft.com/com/

[9] EntireX: Multi-Platform Support of ActiveX:
http://www.softwareag.com/corporat/solutions/entire
x/entirex.htm

